Effect of base composition at the center of inverted repeated DNA sequences on cruciform transitions in DNA.
نویسندگان
چکیده
We have analyzed the effect of base composition at the center of symmetry of inverted repeated DNA sequences on cruciform transitions in supercoiled DNA. For this we have constructed two series of palindromic DNA sequences: one set with differing center and one set with differing center and arm sequences. The F series consists of two 96-base pair perfect inverted repeats which are identical except for the central 10 base pairs which consist of pure AT or GC base pairs. The S series was constructed such that the overall base composition of the inverted repeats was identical but in which the positioning of blocks of AT- and GC-rich sequences varied. The rate of cruciform formation for the inverted repeats in plasmid pUC8 was dramatically influenced by the 8-10 base pairs at the center of the inverted repeat. Inverted repeats with 8-10 AT base pairs in the center were kinetically much more active in cruciform formation than inverted repeats with 8-10 GC base pairs in the center. These experiments show a dominant influence of the center sequences of inverted repeats on the rate of cruciform formation.
منابع مشابه
Stable cruciform formation at inverted repeat sequences in supercoiled DNA.
This paper analyzes equilibrium superhelical cruciform formation in a topologial domain of DNA containing inverted repeat sequences. The cruciform conformation is shown to he stable when the molecule is sufficiently negatively supercoiled but not when it is positively supercoiled. For a particular sequence containing a single inverted repeat, onset of stability occurs at a degree of negative su...
متن کاملLong range structural communication between sequences in supercoiled DNA. Sequence dependence of contextual influence on cruciform extrusion mechanism.
Sequence context may profoundly alter the character of structural transitions in supercoiled DNA (Sullivan, K. M., and Lilley, D. M. J. (1986) Cell 47, 817-827). The A + T-rich sequences of ColE1, which flank the inverted repeat, are responsible for cruciform extrusion following a mechanistic pathway which proceeds via a relatively large denatured region. This C-type mechanism results in kineti...
متن کاملCompetitive superhelical transitions involving cruciform extrusion
A DNA molecule under negative superhelical stress becomes susceptible to transitions to alternate structures. The accessible alternate conformations depend on base sequence and compete for occupancy. We have developed a method to calculate equilibrium distributions among the states available to such systems, as well as their average thermodynamic properties. Here we extend this approach to incl...
متن کاملThe kinetic properties of cruciform extrusion are determined by DNA base-sequence.
The extrusion kinetics of two cruciforms derived from unrelated DNA sequences differ markedly. Kinetic barriers exist for both reactions, necessitating elevated temperatures before extrusion proceeds at measureable speeds, but the dependence upon temperature and ionic strength is quite different for the two sequences. One, the ColE1 inverted repeat, exhibits a remarkably great temperature depen...
متن کاملDNA cruciform arms nucleate through a correlated but asynchronous cooperative mechanism.
Inverted repeat (IR) sequences in DNA can form noncanonical cruciform structures to relieve torsional stress. We use Monte Carlo simulations of a recently developed coarse-grained model of DNA to demonstrate that the nucleation of a cruciform can proceed through a cooperative mechanism. First, a twist-induced denaturation bubble must diffuse so that its midpoint is near the center of symmetry o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 263 11 شماره
صفحات -
تاریخ انتشار 1988